Because wind turbine generation expectations are very straightforward and well documented, production is easily forecast—even for projects not yet constructed. Utility-scale wind energy projects typically report their electricity output in terms of “nameplate generation,” or the amount of electricity that would be generated if all turbines were working at their maximum capacity for one year. Since real-world conditions rarely—if ever—reach this level of production for long, the industry standard for the “expected” generation is to use a capacity factor, or an expected average generation level, of nameplate capacity. The New York Bight and Carolina Long Bay wind energy projects under development off the coasts of New York, New Jersey, North Carolina, and South Carolina are the only large, utility-scale offshore wind lease sales held in the United States thus far, and the author used their data for all per-acre analyses. These projects have a combined nameplate capacity of 6,901 MWh across 598,292 leased acres, which amounts to about 102 MWh per acre. Here, the analysis used the projects’ expected 40 percent capacity factor output of 40.8 MWh per acre.47
Oil and gas essentially share the same extraction and leasing pipeline. Since OCS leases are sold for combined oil and gas extraction rights rather than separate leases for oil and gas, companies can—and do—extract both products from the same leased areas. However, extraction values are only reported in terms of total leased area and total acreage undergoing extraction and are not broken down by product.48 Oil and gas production values are published for each region as a whole, and for these analyses, the author used values from the Gulf of Mexico for 2019 through 2021.49 From this, the author was able to estimate the amount of each product extracted per actively productive acre, lease sale value, and value to taxpayers—although doing so limits the analysis to estimates flattened across all producing acres.
Making comparisons across energy sources is a crucial part of discussing usage of the same physical ocean acreage. Comparing wind energy with natural gas is fairly easy; both energy sources result in electricity as their final product, and with the LCOE used as a common variable to incorporate all project aspects, overall unit cost comparisons are simple. Comparing wind energy generation with crude oil extraction is a less straightforward process, however, since their final products are electricity and liquid fuels, respectively. Their use in transportation, potential for overlapping leasing space, and the U.S. Environmental Protection Agency’s carbon emissions/carbon offset conversion calculator allows that jump to be made with minimal additional effort.50 Using this tool, it was possible to identify the product of one year’s worth of oil extraction across 1 acre of leasing and, as with gas and wind energy, its equivalent emissions and energy values. Since only about 40 percent of each barrel actually ends up becoming gasoline, the author used this lower value for calculations involving vehicle miles and vehicle emissions.51